Forecast an Echo State Network (ESN) from a trained model via
recursive forecasting. Forecast intervals are generated by simulating
future sample path based on a moving block bootstrap of the residuals and
estimating the quantiles from the simulations. The function is a wrapper
for forecast_esn()
and intended to be used in combination with
fabletools::model()
.
Usage
# S3 method for class 'ESN'
forecast(
object,
new_data,
normal = TRUE,
n_sim = 200,
specials = NULL,
xreg = NULL,
...
)
Arguments
- object
An object of class
mdl_df
, containing an ESN model.- new_data
Forecast horizon (n-step ahead forecast).
- normal
Logical value. If
TRUE
, dist_normal() is used, otherwise dist_sample().- n_sim
Integer value. The number of future sample path generated during simulation.
- specials
Currently not in use.
- xreg
A
tsibble
containing exogenous variables.- ...
Currently not in use.
Examples
library(tsibble)
library(fable)
AirPassengers %>%
as_tsibble() %>%
model("ESN" = ESN(value)) %>%
forecast(h = 18)
#> # A fable: 18 x 4 [1M]
#> # Key: .model [1]
#> .model index
#> <chr> <mth>
#> 1 ESN 1961 Jan
#> 2 ESN 1961 Feb
#> 3 ESN 1961 Mrz
#> 4 ESN 1961 Apr
#> 5 ESN 1961 Mai
#> 6 ESN 1961 Jun
#> 7 ESN 1961 Jul
#> 8 ESN 1961 Aug
#> 9 ESN 1961 Sep
#> 10 ESN 1961 Okt
#> 11 ESN 1961 Nov
#> 12 ESN 1961 Dez
#> 13 ESN 1962 Jan
#> 14 ESN 1962 Feb
#> 15 ESN 1962 Mrz
#> 16 ESN 1962 Apr
#> 17 ESN 1962 Mai
#> 18 ESN 1962 Jun
#> # ℹ 2 more variables: value <dist>, .mean <dbl>