Return summary statistics from trained ESN models during random search as tibble.
model
: Model identifier.loglik
: Log-likelihood.nobs
: Number of observations.df
: Effective degrees of freedom.lambda
: Regularization parameter.aic
: Akaike Information Criterion.aicc
: Corrected Akaike Information Criterion.bic
: Bayesian Information Criterion.hqc
: Hannan-Quinn Information Criterion.mse
: Mean Squared Error.mae
: Mean Absolute Error.
Usage
# S3 method for class 'ESN'
glance(x, ...)
Examples
library(tsibble)
library(fable)
AirPassengers %>%
as_tsibble() %>%
model("ESN" = ESN(value)) %>%
glance()
#> # A tibble: 114 × 12
#> .model model loglik nobs df lambda aic aicc bic hqc mse
#> <chr> <chr> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 ESN model(077) 195. 135 19.2 0.0159 -352. -345. -296. -329. 0.00326
#> 2 ESN model(037) 195. 135 19.4 0.0148 -352. -345. -296. -329. 0.00324
#> 3 ESN model(043) 185. 135 15.6 0.0750 -339. -335. -294. -321. 0.00377
#> 4 ESN model(035) 199. 135 21.1 0.00800 -355. -347. -294. -330. 0.00309
#> 5 ESN model(055) 185. 135 15.5 0.0780 -338. -334. -293. -320. 0.00379
#> 6 ESN model(071) 184. 135 15.3 0.0861 -337. -333. -293. -319. 0.00384
#> 7 ESN model(110) 202. 135 22.9 0.00465 -358. -348. -291. -330. 0.00295
#> 8 ESN model(080) 204. 135 24.4 0.00324 -360. -348. -289. -331. 0.00284
#> 9 ESN model(025) 177. 135 13.9 0.165 -325. -322. -285. -309. 0.00428
#> 10 ESN model(089) 176. 135 13.8 0.171 -324. -321. -284. -308. 0.00432
#> # ℹ 104 more rows
#> # ℹ 1 more variable: mae <dbl>