Return summary statistics from trained ESN models during random
search as tibble
.
model
: Model identifier.loglik
: Log-likelihood.nobs
: Number of observations.df
: Effective degrees of freedom.lambda
: Regularization parameter.aic
: Akaike Information Criterion.aicc
: Corrected Akaike Information Criterion.bic
: Bayesian Information Criterion.hqc
: Hannan-Quinn Information Criterion.mse
: Mean Squared Error.mae
: Mean Absolute Error.
Usage
# S3 method for class 'ESN'
glance(x, ...)
Examples
library(tsibble)
library(fable)
AirPassengers %>%
as_tsibble() %>%
model("ESN" = ESN(value)) %>%
glance()
#> # A tibble: 114 × 12
#> .model model loglik nobs df lambda aic aicc bic hqc mse
#> <chr> <chr> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 ESN model(092) 189. 135 16.7 0.0457 -344. -339. -296. -325. 0.00357
#> 2 ESN model(085) 198. 135 20.7 0.00912 -354. -346. -294. -330. 0.00312
#> 3 ESN model(070) 186. 135 15.7 0.0704 -340. -335. -294. -321. 0.00374
#> 4 ESN model(015) 185. 135 15.6 0.0757 -339. -334. -294. -320. 0.00378
#> 5 ESN model(054) 184. 135 15.3 0.0872 -337. -333. -293. -319. 0.00385
#> 6 ESN model(030) 183. 135 15.1 0.0927 -336. -332. -292. -318. 0.00388
#> 7 ESN model(100) 182. 135 15.0 0.102 -335. -331. -291. -317. 0.00394
#> 8 ESN model(112) 178. 135 14.2 0.146 -328. -324. -287. -311. 0.00418
#> 9 ESN model(086) 178. 135 14.2 0.147 -328. -324. -287. -311. 0.00419
#> 10 ESN model(028) 177. 135 14.0 0.157 -326. -323. -285. -310. 0.00424
#> # ℹ 104 more rows
#> # ℹ 1 more variable: mae <dbl>