Return summary statistics from trained ESN models during random search as tibble.
model
: Model identifier.loglik
: Log-likelihood.nobs
: Number of observations.df
: Effective degrees of freedom.lambda
: Regularization parameter.aic
: Akaike Information Criterion.aicc
: Corrected Akaike Information Criterion.bic
: Bayesian Information Criterion.hqc
: Hannan-Quinn Information Criterion.mse
: Mean Squared Error.mae
: Mean Absolute Error.
Usage
# S3 method for class 'ESN'
glance(x, ...)
Examples
library(tsibble)
library(fable)
AirPassengers %>%
as_tsibble() %>%
model("ESN" = ESN(value)) %>%
glance()
#> # A tibble: 114 × 12
#> .model model loglik nobs df lambda aic aicc bic hqc mse
#> <chr> <chr> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 ESN model(037) 194. 135 16.3 0.0148 -356. -351. -309. -337. 0.00330
#> 2 ESN model(077) 194. 135 16.1 0.0159 -355. -351. -308. -336. 0.00332
#> 3 ESN model(035) 197. 135 17.5 0.00800 -359. -354. -308. -339. 0.00315
#> 4 ESN model(110) 200. 135 18.8 0.00465 -362. -355. -307. -339. 0.00304
#> 5 ESN model(080) 201. 135 19.7 0.00324 -363. -356. -306. -340. 0.00297
#> 6 ESN model(043) 180. 135 13.2 0.0750 -333. -330. -295. -318. 0.00407
#> 7 ESN model(092) 210. 135 25.5 0.000578 -369. -356. -295. -339. 0.00261
#> 8 ESN model(055) 179. 135 13.2 0.0780 -332. -329. -294. -317. 0.00411
#> 9 ESN model(071) 178. 135 13.0 0.0861 -330. -327. -292. -314. 0.00420
#> 10 ESN model(025) 166. 135 11.9 0.165 -309. -306. -274. -295. 0.00498
#> # ℹ 104 more rows
#> # ℹ 1 more variable: mae <dbl>